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Abstract 

If a crystal structure is regarded as a space-group array of rigid spheres in 
contact, then the relationship F = P - C + 1 holds, where P is the number 
of dimensionless variable parameters of the structure and F is the number of 
degrees of freedom in parameter-space when C modes of contact are present. 
This contact rule is, like Gibbs’ phase rule, a simultaneous-equation rule and 
permits the construction of contact diagrams that show how atomic contacts 
change as the structural parameters are varied. These diagrams provide a con- 
venient means of calculating and displaying the parametric variation of such 
properties as connectivity, coordination number, packing fraction, and the 
Madelung constant. To the extent that atomic radii and bond type are physically 
meaningful concepts, the contact rule is also useful for optimizing atomic posi- 
tion parameters in trial structures, comparing the bonding properties of different 
structures, deriving consistent values for atomic radii, and characterizing 
bond type. 
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A Contact Rule for Rigid-Sphere Models of Crystal Structures 

1. Introduction 

A crystal structure may be regarded as a space-group 
array of rigid spheres in contact; this premise underlies, 
for example, all usage of atomic and ionic radii. Although 
this model is widely used in the determination and inter- 
pretation of ionic and intermetallic structures, there has 
hitherto been no systematic treatment of the parametric 
variation of the properties of crystallographic sphere 
packings. It has recently been discovered (Ref. 11, how- 
ever, that such structures obey the topological relation 
F = P - C + 1, where P is the number of dimensionless 
variable parameters in the structure and F is the number 
of degrees of freedom (i.e., the number of independently 
variable parameters) when C contact modes (sets of 
symmetrically equivalent contacts) are realized. This 
contact rule is analogous to Gibbs' phase rule (Ref. 2) 
and may be applied in similar ways, such as in the con- 
struction of contact diagrams, which show the parametric 
variation of the contacts and connectivity of the sphere 
packing. To the extent that the rigid-sphere model is a 
valid approximation of the real crystal structure, contact 
diagrams are useful for displaying or determining such 
properties as coordination number, packing fraction, and 
the Madelung constant. The contact rule may also be 
used to estimate optimum atomic position parameters in 
trial structures, to characterize bond type in a specific 

structure, and to derive self-consistent sets of values fix 
atomic and ionic radii. 

This report includes a derivation of the contact rule, 
a description of the construction and use of contact dia- 
grams, and a discussion of some of their advantages and 
limitations. 

II .  Derivation of the Contact Rule 

A space-group array of rigid spheres may be com- 
pletely described in terms of its dimensionless param- 
eters - the n - 1 radius ratios of the n atomic species 
[differentiated eithei by atomic type (i.e., size) or space- 
group position], the unit-cell axial ratios and/or angles, 
and the space-group position parameters. The total 
number of variable dimensionless parameters for any 
given structure is defined as P .  

The contacts between spheres fall into groups of sym- 
metrically equivalent contacts, each such group being 
defined as a contact mode. Contact modes may be either 
homogeneous (between equivalent spheres in the same 
space-group position) or heterogeneous (between non- 
equivalent spheres ur between spheres in different space- 
group positions). 
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Throughout any parametric variation of the sphere- 
packing, it is obvious that all contacts in a given contact 
mode will - because of their symmetrical equivalence - 
be made or broken simultaneously. At any time during 
such a parametric variation-that is, at any point in 
parameter space - the total number of operative contact 
modes is defined as C. 

CONTACTS 

AB 
AB, AB 

AA, AB, BB 

When the structure is expanded so that none of its 
spheres are in contact, then it possesses a degree of free- 
dom (i.e., an independent variable) corresponding to 
each of i2S dimensionless parameters, plus an additional 
degree of freedom corresponding to the implicit variable 
of unit-cell expansion (Le., u,/R,). Therefore, the total 
number of degrees of freedom ( F )  is equal to P + 1. If 
the structure is now contracted until some of the spheres 
come into contact, each contact mode, when present, 
specifies a parametric equation (i.e., the sum of the radii 

VALUE 

C F  RA/RB 

i I 0.414 TO 2.415 
2 0  2.4 I5 
3 - I  IMPOSSIBLE 

CONTACTS AND PARAMETERS 

F - P - C + I  

P = I ,  OR R ~ / R ~  

equals the distance between their centers) and thereby 
eliminates one of the degrees of freedom of the system. 
Hence, at any point in parameter space, 

F =  P - C + 1. 

This relationship is best illustrated by considering a 
simple structure such as sodium chloride (Fig. 1). There 
is only one variable parameter, the anion-cation, radius 
ratio RJRB, but there are three possible contact modes: 
AA and BB, both in the <110> direction, and AB in the 
<loo> direction. According to the contact rule, we can 
make the following statements: 

(1) The presence of only one contact mode permits 
one degree of freedom; e.g., AB contact is possible 
for any value of RJRB between 0.414 and 2.415. 

CONTACT DiAGRAM 

R A h B  

0 I 2 3 

+ + 

I I 

Fig. 1. Application of contact rule to NaCI structure 
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Two simultaneous contact modes permit no de- 
grees of freedom, so the structure is completely 
specified; e.g., simultaneous AA and AB contact 
fix the radius ratio at 2.415. 

It  is impossible to have all three contact modes 
present simultaneously. 

I .2 

These conclusions may be verified by geometric con- 
struction, as shown in Fig. 1. 

I I I I I '  I 

I 

111. Two-Parameter Structures: Contact Diagrams 

The contact rule, like Gibbs' phase rule, is a special 
case of the simultaneous-equation rule' that, in turn, is 
equivalent to the topological tiling theorem of Lebesque 
and Brouwer (Ref. 3). For this reason, any application 
of the contact rule to a specific structure type automat- 
ically implied the existence of a contact diagram in 

'Despite an apparent similarity in external form, and despite 
several claims to the contrary, these rules have no relation or 
analogy to Eder's rule for polyhedra (Ref. 4). 

parameter space. For a two-parameter structure, for 
example, each d m a i n  of the two-dimensional contact 
diagram corresponds to the range of parametric values 
in which one contact mode is operative, each boundary 
between two domains correspands to the values for 
which two contact modes (of the two adjacent domains) 
are simultaneously operative, and each triple point (i.e., 
the meeting point of three domains) corresponds to the 
unique values for which three contact modes are sjmul- 
taneously operative. This is illustrated for the AlB, 
structure-type in Fig. 2. 

A contact diagram may be constructed in the follow- 

(1) By inspection of the structure, all possible contact 
modes are identified and a contact equation, e.g., 

ing manner: 

is identified with each contact mode. 

CONTACTS AND PARAMETERS 

0 . 5 ~  0.4 0.5 I .o 1.5 2.0 

RADIUS RATIO Rx/ffy 

Fig. 2. Contad diagram for AIB, structure 
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(2) AI1 possible triple points are determined by find- 
ing simultaneous solutions for all possible com- 
binations of three contact equations. Solutions 
having unreaIistic values for the parameters (e.g., 
negative or imaginary values) are discarded. 

(3) The remaining triple points are compared with the 
original structure by inspection or by geometric 
construction. Points that are not physically realiz- 
able (e.g., those which require interpenetration of 
spheres) are discarded. 

(4) The remaining triple points are plotted on the con- 
tact diagram. By means of the contact equations, 
connecting boundary lines are calculated and plot- 
ted between all pairs of triple points having two 
contact modes in common. 

A more formal and general program for calculating 
contact diagrams will be discussed in Section IV. 

Properties that depend only on the number and types 
of contact modes, such as lattice connectivity and coor- 
dination number, have constant values within each con- 
tact mode domain and along the boundaries between 
them. They may, therefore, be readily mapped on the 
contact diagrams by appropriate labeling. 

Connectivity, the incorporation of all the spheres in 
the structure into a continuous contact-network such that 
a path of contacts exists between any two spheres in the 
structure, may be determined in simple structures by 
inspection. Fischer (Ref. 5) has an elegant method of 
determining connectivity in homogeneous sphere pack- 
ings, i.e., packings of single crystallographic complexes. 
Each contact mode is identified with the symmetry 
operation (or operations) which transforms a position 
from one end of a contact to the other. If, at any given 
point in parameter space, the set of symmetry operations 
corresponding to the operative contact modes is suffi- 
cient to generate the complete symmetry group of the 
space-group, then the structure is connective at that 
point. An analogous, though more complex, rule un- 
doubtedly exists for heterogeneous sphere packings. 

The connective regions in a contact diagram corre- 
spond to entire contact-mode domains and/or the entire 
boundaries between them; these may be designated by 
shaded areas, solid lines, and circled triple points. In the 
AlB, structure, for example, XY contact is both a neces- 
sary and sufficient condition for connectivity (Fig. 2). 
In the idealized perovskite structure, however, only the 
AC + BC and AC + AB boundaries are connective 

(Fig. 3). Since connectivity is usually a requirement in 
any real structure, the connective regions of the contact 
diagram will usually be the only physically meaningful 
regions. Apparent exceptions, however, such as LiI and 
Cu,O, do exist. 

Coordination number - taken in the strict sense as the 
number of spheres in contact with a given sphere - can 
be determined readily from the multiplicity of the con- 
tact modes, i.e., the number of contacts per unit all 
belonging to a given contact mode. If, for the structure 
A&, X A  is the number of A spheres per unit cell and 
M A A i  and M A B j  are the multiplicities of the iih AA (hmo- 
geneous) mode and the j‘” AB (heterogeneous) mode, 
respectively, then the coordination number K A  at any 
given point is given by: 

This relation is illustrated in the contact diagram in 
Fig. 3. The notation used is somewhat redundant; only 
the multiplicities need be listed. Needless to say, for a 
given species, the coordination number at a boundary 
or triple point is the sum of the coordination numbers 
in the adjacent domains. 

Other properties that also depend on the sphere- 
packing characteristics of the structure, such as packing 
fraction and the Madelung constant (Ref. 6), have values 
that vary within any one contact domain. In such cases, 
the contact diagram serves as a convenient matrix for 
the calculation and representation of these properties. 
Within each domain, the equation that determines the 
quantity in question is derived from the contact equa- 
tion of that domain. The values of the quantity are most 
conveniently represented as contour lines within the con- 
tact domains. These contour lines are continuous across 
the domain boundaries, but their derivatives are discon- 
tinuous at the boundaries; this property illustrates how 
much more difficult it would be to compute these quan- 
tities without the aid of contact diagrams. 

A typical calculation of contour lines of packing frac- 
tion (the volume percentage of space filled by spheres) 
is shown in Fig. 4. Whereas packing-fraction calculations 
are exact, calculations of the Madelung constant are 
only approximate because they assume a rigid-sphere 
model-that is, an infinite exponent in the repulsive 
energy term. The possibility of refinements involving a 
soft-sphere model will be discussed in a later section. 
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CONTACTS AND PARAMETERS 

4.5 

4.0 

3.5 

3.0 

A (Ti) B (Ca) 

I I I I I I 
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- 

2.5 

2.0 

I .5 

I .o 

/ 
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/ 
/ 

/ / 
/ / 

CONNECTIVE 
REGIONS -----v 

BpC4 (12) 
MULTIPLICITY 

(NUMBER OF /N~~OII$TIO~~" CONTACTS UNIT CELL) PEF 

0 I .o 2.0 3.0 

RA/RC 

Fig. 3. Contact diagram for perovskite structure 
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IV. Representation of Multiparameter Structures 

The advantages of contact diagrams for two-parameter 
structures have, it is hoped, been amply demonstrated. 
Unfortunately, most structures of interest have far more 
than two or three parameters, so their contact diagrams 
would have to be constructed in hyperspace. This neces- 
sity constitutes the chief limitation of the contact rule at 
this time. Before widespread application is possible, it 
will be necessary, first, to develop a generalized program 
for computing multiparameter contact diagrams and, 
then, to devise suitable means for representing these 
hyperspace diagrams in usable and comprehensible form. 

At present, two computer programs for the calculation 
of sphere contacts are being developed. The author is 
attempting to construct a matrix program for solving the 
contact equations of any structure with ten parameters 
or less. This method, however, presupposes the prior 
selection of contact modes and the formulation of the 
contact equations, which, at present, is done by inspec- 
tion. However, it is possible that a group-theory formal- 
ism can be developed that will simplify this part of the 
problem. On the .basis of different premises, Fischer 
(Ref. 5) is developing a program for calculating the 
sphere contacts in homogeneous sphere packings (pack- 
ings of a single lattice complex). In his method, the pos- 
sible contact between each pair of points in the complex 
is calculated separately. Presumably, the family relation- 
ship between contacts in the same contact mode will 
then be identified by their identical parametric variation. 
Although both programs have their difficulties and dis- 
advantages - in both cases, for example, heterogeneous 
packings are far more difficult than homogeneous ones - 
the problems are by no means unprecedented and it may 
safely be assumed that workable programs for comput- 
ing contact diagrams will be available in the near future. 

On the other hand, the problem of representing or 
displaying a hyperdimensional contact diagram in a con- 
venient and usable form is much more difficult. No ideal 
solution exists (short of transforming crystallographers 
into hyperspace beings), and different applications will 
probably require different methods. Some fairly success- 
ful techniques have already been developed by metal- 
lurgists for the interpretation of multicomponent phase 
diagrams. Other methods are peculiarly applicable to 
contact diagrams because, as a rule, only a very re- 
stricted portion of any one diagram is of practical inter- 
est, i.e., the connective regions lying in zones of radius 
ratios or axial ratios in the range of those observed in 
real structures. 

The following methods constitute only a partial and 
tentative list of techniques that might be of value. 

A. Contour Overlap 

A three-dimensional structure may obviously be rep- 
resented in two dimensions by a stereophotograph of a 
three-dimensional model. This effeot may also be 
achieved, in part, by the use of overlapping shaded 
areas. An example of such a diagram is shown in Fig. 6 
for the wurtzite structure, whose parameters and contact 
modes are shown in Fig. 5. This method is only useful 
for fairly simple three-parameter structures. 

Fig. 5. Contacts and parameters for wurtzite structure 

B. Sections 

A series of two-dimensional diagrams (for which all 
but two parameters are held constant) can be con- 
structed and viewed in sequence. This is illustrated for 
the wurtzite structure in Fig. 7. If the contact diagram 
of a three-parameter structure is sufficiently simple, a 
series of sectional views, in which one parameter is 
varied systematically, can be superimposed; the result 
is similar to a contour map. 

C. Interfaces 

If two or more contact modes are arbitrarily equated, 
the resultant contact diagram will completely include the 
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CONTACT MODES 
XYf XXa XXd m m  . . ....... 

LINE I I  SECTION: CONNECTIVE - - NONCONNECTIVE - - - 
PLANE I SECTION: CONNECTIVE - NONCONNECTIVE --- 

I XYC 

0 0. I 
6 5 4 3 2 I 0 

U 

U Fig. 7. Contact diagram sections for wurtzite (approx.) 

Fig. 6. Overlap contact diagram for wurtzite (approx.) 

- CO = I / d 3  ( u  - 1/41 
*O 

XYC 3 XYf 

WHEN U - ( U  - 0.5) 

Fig. 8. Interface contact diagram for wurtzite (approx.) 

0 I 2 3 4 5 
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boundary common to the domains of all the equated 
contacts. An example of such a diagram for the wurtzite 
structure is shown in Fig. 8. 

D. Splitting of Contact Modes 

If the multiparameter structure is a distortion of a 
simple structure of higher symmetry, then, as the param- 
eters are varied from the symmetrical to the distorted 
structure, the contact modes may be thought of as split- 
ting into nonequivalent subgroups. Figure 9 illustrates 
this case for the distortion of the AlB, structure to the 
CeCu, structure. It will be noted, for example, that 
the XXa mode splits into (1) the XXas mode, which 
contracts; (2) the XXas mode, which expands; and (3) the 
XXan mode, which remains approximately the same. 
Therefore, it may be inferred that, in the CeCu, struc- 
ture, the XXas mode is the most important of the three. 
Further, one may, by inspection only, infer that the 
combination XYa f XYb +XYc + XYd + Wcs + YYbb 
+ XXas is likely to be a significant septuple-point in the 
CeCu, contact diagram. 

E. Connective Skeletons 

As was mentioned earlier, the regions of interest in a 
contact diagram are usually restricted to the connective 
portions of the diagram. It is reasonable to expect that, 
in a multiparameter structure, no single contact-mode 
domain will be connective; rather, one expects that con- 
nectivity will be confined to boundaries common to sev- 
eral domains and, therefore, of lower dimensionality. For 
example, in a structure with n different species of 
spheres, a connective region must simultaneously adjoin 
at least n - 1 contact-mode domains. In at least some 
cases, the connective regions may form a skeleton-like 
framework of connected lines, surfaces, and/or volumes 
in real space. If so, a model of the connective skeleton 
could be construc.ted and labeled at intervals with the 
corresponding sets of hyperdimensional coordinates. 
With sufficient study, such a skeleton model might con- 
vey considerable information about the structure. 

F. Traces of Maxima 

An even more restricted, and possibly more meaning- 
ful, representation of the contact diagram would be a 
skeleton (or rather network) of traces of packing-fraction 
or the Madelung constant maxima of the diagram. In non- 
connective regions, these would be the one-dimensional 

n-fold boundaries’; in the connective regions, the skele- 
ton could be defined as the trace of the least steep 
descent from the maximum. The labeling at suitable 
intervals along each member of the network would in- 
clude the set of coordinates (parameter values) plus the 
value of the packing fraction or the Madelung constant 
at that point. Such a skeleton should, with practice, be 
quite easy to interpret. This method may have some anal- 
ogy to the packing map method used by Samson (Ref. 7) 
for the solution of complex intermetallic structures. 

G. Topological Reduction 

Contact diagrams are, by definition, divisions of 
n-dimensional space into polytopes, all of whose zero- 
dimensional vertices adjoin exactly n + 1 domains. For 
this reason, they are subject to certain topological reduc- 
tions and projections which, it is claimed, are of great 
value in interpreting multicomponent phase diagrams 
(Refs. 8, 9, and 10). Since contact diagrams tend to be 
considerably simpler than phase diagrams of the same 
dimensionality, it is reasonable to assume that these 
same techniques will be of value in the interpretation 
of multiparameter contact diagrams. 

H. Computer Manipulation 

In the long run, the most practical method may be 
simply to store the entire contact diagram in the com- 
puter in such a form that, upon command, any section, 
interface, connective skeleton, or trace of maxima is 
available for immediate display. Such systems are already 
in use for solving engineering problems (Ref. ll), and an 
application to contact diagrams should not be difficult. 

To date, none of these techniques has been seriously 
tried, and it will undoubtedly be several years before 
their relative efficacy can be evaluated. 

V. Extensions of the Rigid-Sphere Model 
Thus far, the contact rule has been applied only to 

structures composed of rigid spheres of coordination- 
invariant size. I t  is possible to consider other models that 
correspond more closely to real atoms and crystals. Each 
of these variations, however, entails additional compli- 
cations and difficulties. 

*Throughout the nonconnective regions of a contact diagram, the 
points of maximum contact always correspond to packing-&action 
maxima; this is not necessarily true, however, within the connec- 
tive regions. 
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For example, the rigid spheres might be replaced by 
soft spheres whose repulsion potential has a finite expo- 
nent. The gross effect of this modification on the contact 
diagram would be to blur the boundaries between con- 
tacts or to give them a finite thickness. This would be 
a considerable refinement in the calculation of the 
Madelung constant contour lines and might even be 
advantageous in the optimization of packing fraction in 
ideal metallic structures. To calculate contact diagrams 
from this model, however, it is necessary to specify the 
attractive potential, also. This would make the diagram 
less general and would involve considerably greater 
difficulty in computation. Therefore, before using this 
model in the computation of the Madelung constants, for 
example, it would be wise, first, to use the rigid-sphere 
model and, then, compare it at representative points 
with the more precise calculations to see if the discrep- 
ancy is worth the extra effort. 

A more serious limitation of the current model exists 
in its application to intermetallic structures. It is gen- 
erally agreed, on the basis both of elementary theory and 
empirical correlation, that the radius of a metallic atom 
increases with increasing coordination number (Refs. 12 
and 13). It can be demonstrated readily that, if the con- 
tact diagram is plotted in terms of standard metallic 
radii (estimated for constant coordination or extrapolated 
to zero coordination), the coordination-variations of the 
radii cause the contact domains to overlap each other, 
with the contact boundaries lying somewhere in the 
regions of overlap. However, this seeming inconsistency 
appears to be easily resolvable; it may even provide a 
means of estimating the variation of effective coordina- 
tion with near-contact proximity of other atoms. In this 
event, coordination numbers could no longer be re- 
garded as strictly constant throughout a contact domain, 

and contour lines would have to be used-at least in 
the regions of apparent overlap. 

Finally, it would be hypothetically possible to replace 
the spheres by other geometric solids such as ellipsoids 
or polyhedra. However, this substitution is, in practice, 
quite infeasible, not only because there is no good reason 
for doing it, but because it would worsen that aspect of 
the contact diagram that already causes the most diffi- 
culty - its hyperdimensionality. A sphere can be specified 
by only one nonpositional parameter, i.e., its diameter. 
An ellipsoid of revolution requires three additional pa- 
rameters - one axial ratio and two orientation angles. 
General ellipsoids and nonregular polyhedra would 
require even more additional parameters. It is unlikely, 
therefore, that this modification of the contact rule will 
ever be used. 

VI. Applications 

As an aid to the study and interpretation of crystallo- 
graphic sphere packings, the contact rule is of con- 
siderable usefulness and entails no approximations or 
inaccuracies. By way of trivial example, it is an excellent 
way of determining optimum cork-ball sizes for sphere- 
packing models of crystal structures. In any program for 
deriving all possible binary sphere packings - as might 
be done, for example, by combining Fischer’s computa- 
tion of homogeneous complex sphere packings (Kef. 5 )  
with Biedl’s stuffing sphere program (Kef. 14) - the con- 
tact rule would serve, at the very least, as a convenient 
method of representation of these systems. In addition, 
the contact rule is uniquely suitable for deriving para- 
metric family trees for showing relationships between 
distorted forms of a parent structure. One example of 
this is given in Fig. 9, another is shown below: 

VARIABLE 
PARAMETERS STRUCTURE TYPES 

0 

10 

u = 1/4 A 
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This method is complementary to, and in some cases, an 
improvement over, existing structural classifications. 
These relationships can be studied easily or displayed 
quantitatively, since the contact diagram of any s h c -  
ture in such a tree is a section or interface of the contact 
diagram of the structure beneath it. 

On the other hand, any applications of the contact rule 
to specific structures or compounds must be handled 
with discretion. It must always be borne in mind that the 
contact rule is not a law of chemistry or physics but 
merely of geometry; it does not apply to real compounds 
but only to one simplified - albeit widely used - model 
of them. 

With this restriction in mind, the contact rule may be 
used for the interpretation of structural parameters in 
terms of bond type and empirical atomic radii. Ideal 
metallic or ionic bonding, for example, can be approxi- 
mated legitimately by rigid spheres held together by 
nondirectional forces. We might, therefore, assume that 
structural optimization of metallic structures would im- 
ply both connectivity and a maximization of packing 
fraction. Ionic structures would tend to be optimized 
near the Madelung constant maxima, lying presumably 
in connective regions. Covalent bonding, however, is 
highly directional and permits a continuous range of 
bond distances with no specifiable contact distance. 
Therefore, neither the concept of atomic radii nor the 
contact rule applies to covalent structures, and these 
cannot be assigned to any specific position on a contact 
diagram. 

These criteria may be illustrated by typical AlB, type 
structures. On the basis of the contact diagram (Fig. 2) 
we might presume that ideal metallic compounds would 
be optimized within the XY domain, perhaps near the 
triple points. Presumably, ideal ionic structures would 
be favored by a maximum of anion-cation contacts and 
an avoidance of homogeneous contacts; hence, these 
compounds might be optimized near the center of the 
XY domain. 

If we now consider the compounds having the AlB, 
type structure, one group [CeGa,, LaGa,, etc. (Ref. 15)] 
all have a cJa,, axial ratio of approximately 1.0. If con- 

ventional metallic radii (Ref. 13) are assumed, these 
structures would lie deep in the nonconnective region of 
the YYb field of the contact diagram; this fact suggests 
that these structures are not ideally metallic. If we as- 
sume some degree of ionic character, the gallium with a 
partial positive charge, the radius ratio RJR, would in- 
crease and the position of these structures on the contact 
diagram would shift toward the center of the XY field, a 
location consistent with the postulate of ionic character. 
In contrast, the transition metal borides, such as ZrB, 
and WB, (Ref. IS), have co/ao axial ratios greater than 
1.1, so that it is impossible to place these structures 
on a connective portion of the AlB, contact diagram. 
Therefore, these structures are probably predominantly 
covalent. 

Similar procedures, applied to the contact diagram of 
a structure type representing a large number of ionic 
compounds (e.g., spinel), might lead to the derivation of 
a set of self-consistent ionic radii. These techniques may 
also be of value in optimizing parameters of trial struc- 
tures in X-ray diffraction structural determinations. 

Finally, the contact rule may provide some philosoph- 
ical insights into the reasons which cause a given chemical 
compound to choose one structure type in preference to 
another. For one thing, the contact rule does not imply 
that all the densest sphere packings are necessarily of 
high symmetry. As the symmetry is lowered and the 
number of parameters increases, the contact modes do 
indeed split into modes of lower multiplicity, but the 
allowed number of simultaneous contact modes also 
increases. Therefore, a low-symmetry multiparameter 
structure may have a connectivity and density compa- 
rabIe to its high-symmetry analog (cf. Fig. 9). 

VII. Conclusion 

This report has been intended to demonstrate that the 
contact rule and contact diagrams have unique advan- 
tages in the study of sphere-packing models of crystal 
structures. The actual extent of their usefulness, how- 
ever, remains to be determined. To this end, work is now 
in progress on the application of contact diagrams to 
crystal chemical investigations of simple ionic structures. 
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